因为专业

所以领先

客服热线
136-9170-9838
[→] 立即咨询
关闭 [x]
行业动态 行业动态
行业动态
了解行业动态和技术应用

三维半导体堆叠技术,促进半导体封装领域的变革性发展


近年来半导体封装技术的六大发展趋势。分析这些趋势有助于我们了解封装技术如何不断演变并发挥作用。

image.png

▲图4:半导体封装技术的发展趋势

首先,由于散热已经成为封装工艺的一个重要因素,因此人们开发出了热传导【6】性能较好的材料和可有效散热的封装结构。

【6】热传导:指在不涉及物质转移的情况下,热量从温度较高的部位传递到相邻温度较低部位的过程。

可支持高速电信号传输的封装技术也成为了一种重要发展趋势,因为封装会限制半导体产品的速度。例如,将一个速度达每秒20千兆 (Gbps) 的半导体芯片或器件连接至仅支持每秒2千兆(Gbps) 的半导体封装装置时,系统感知到的半导体速度将为每秒2千兆 (Gbps)。由于连接至系统的电气通路是在封装中创建,因此无论芯片的速度有多快,半导体产品的速度都会极大地受到封装的影响。这意味着,在提高芯片速度的同时,还需要提升半导体封装技术,从而提高传输速度。这尤其适用于人工智能技术和5G无线通信技术。鉴于此,倒片封装【7】和硅通孔(TSV)【8】等封装技术应运而生,为高速电信号传输提供支持。

【7】倒片封装(Flip Chip):一种通过将凸点朝下安装于基板上,将芯片与基板连接的互连技术。

image.png

【8】硅通孔(TSV):一种可完全穿过硅裸片或晶圆实现硅片堆叠的垂直互连通道。

另一个发展趋势是三维半导体堆叠技术,它促进了半导体封装领域的变革性发展。过去,一个封装外壳内仅包含一个芯片,而如今可采用多芯片封装(MCP)和系统级封装(SiP)【9】等技术,在一个封装外壳内堆叠多个芯片。


【9】系统级封装(SiP):一种将多个器件整合在单个封装体内构成一个系统的封装技术。

image.png

封装技术还呈现半导体器件小型化的发展趋势,即缩小产品尺寸。随着半导体产品逐渐被用于移动甚至可穿戴产品,小型化成为客户的一项重要需求。为了满足这一需求,许多旨在减小封装尺寸的技术随之而诞生。


此外,半导体产品正越来越多地应用于各种环境中。除了健身房、办公室或住宅等日常环境,热带雨林、极地地区、深海甚至太空等环境中也能见到半导体的身影。由于封装的基本作用是保护半导体芯片和器件,因此需要开发高度可靠的封装技术,确保半导体产品在此类极端环境下也能正常工作。


最后,由于半导体封装是最终产品,封装技术不仅要实现预期功能,还要具有较低的制造成本。


除了上述旨在推进封装技术特定作用的发展趋势,促使封装技术发生演变的另一个驱动力是整个半导体行业的发展。在图5中,红色线条表示自20世纪70年代以来装配过程中安装的印刷电路板(PCB)【10】的特征尺寸变化情况,绿色线条则表示晶圆上CMOS晶体管的特征尺寸变化情况。缩小特征尺寸有助在印刷电路板和晶圆上绘制更小的图案。


【10】印刷电路板(PCB):由电路组成的半导体板,且元件焊接在电路板表面。这些电路板通常用于电子设备中。

image.png

▲图5:随着时间的推移,晶圆和 印刷电路板特征尺寸的变化情况


20世纪70年代,印刷电路板与晶圆的特征尺寸差异较小。如今,晶圆正在步入量产阶段,同时特征尺寸小于10纳米(nm)的CMOS晶体管也在开发中,而印刷电路板的特征尺寸依然在100微米(um)的范围。两者特征尺寸的差距在过去几十年里显著扩大。


由于主板以面板的形式制造,且受到成本节约策略等因素的影响,印刷电路板的特征尺寸变化不大。然而,随着光刻技术的进步,CMOS晶体管的特征尺寸大幅缩小,这使得CMOS晶体管的尺寸与印刷电路板的尺寸差距逐渐拉大。但问题在于,半导体封装技术需要对从晶圆上切割下来的芯片进行个性化定制,并将其安装到印刷电路板上,因此就需要弥补印刷电路板和晶圆之间的尺寸差距。过去,两者在特征尺寸上的差异并不明显,因而可以使用双列直插式封装(DIP)【11】或锯齿型单列式封装(ZIP)【12】等通孔技术,将半导体封装引线插入印刷电路板插座内。然而,随着两者特征尺寸差异不断扩大,就需要使用薄型小尺寸封装(TSOP)等表面贴装技术(SMT)【13】将引线固定在主板表面。随后,球栅阵列(BGA)、倒片封装、扇出型晶圆级芯片尺寸封装(WLCSP)【14】及硅通孔(TSV)等封装技术相继问世,以弥补晶圆和主板之间不断扩大的尺寸差异。


【11】双列直插式封装(DIP):一种电气连接引脚排列成两行的封装技术。

【12】锯齿型单列式封装(ZIP):一种引脚排列成锯齿型的封装技术,是双列直插式封装的替代技术,可用于增加安装密度。

【13】表面贴装技术(SMT):一种通过焊接将芯片安装到系统板表面的封装方法。

【14】晶圆级晶片尺寸封装(WLCSP):一种在晶圆级封装集成电路的技术,是倒片封装技术的一个变体。扇出型晶圆级芯片尺寸封装(WLCSP)的特点在于连接超出(“扇出”)芯片表面。

半导体堆叠技术芯片封装清洗:

合明科技研发的水基清洗剂配合合适的清洗工艺能为芯片封装前提供洁净的界面条件。

水基清洗的工艺和设备配置选择对清洗精密器件尤其重要,一旦选定,就会作为一个长期的使用和运行方式。水基清洗剂必须满足清洗、漂洗、干燥的全工艺流程。

污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。

这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。

合明科技运用自身原创的产品技术,满足芯片封装工艺制程清洗的高难度技术要求,打破国外厂商在行业中的垄断地位,为芯片封装材料全面国产自主提供强有力的支持。

推荐使用合明科技水基清洗剂产品。



[图标] 联系我们
[↑]
申请
[x]
*
*
标有 * 的为必填
Baidu
map