因为专业

所以领先

客服热线
136-9170-9838
[→] 立即咨询
关闭 [x]
行业动态 行业动态
行业动态
了解行业动态和技术应用

碳化硅功率器件生产工艺流程和功率器件封装清洗介绍

碳化硅产业链主要由衬底、外延、器件、应用等环节组成。碳化硅晶片作为半导体衬底材料,根据电阻率不同可分为导电型、半绝缘型。导电型衬底可用于生长碳化硅外延片,制成耐高温、耐高压的碳化硅二极管、碳化硅MOSFET等功率器件,应用于新能源汽车、光伏发电、轨道交通、智能电网、航空航天等领域;半绝缘型衬底可用于生长氮化镓外延片,制成耐高温、耐高频的HEMT 等微波射频器件,主要应用于5G 通讯、卫星、雷达等领域。

一、碳化硅产业链图谱

image.png

二、生产工艺流程及周期

碳化硅生产流程主要涉及以下过程:

1)单晶生长,以高纯硅粉和高纯碳粉作为原材料形成碳化硅晶体;2)衬底环节,碳化硅晶体经过切割、研磨、抛光、清洗等工序加工形成单晶薄片,也即半导体衬底材料;

3)外延片环节,通常使用化学气相沉积(CVD)方法,在晶片上淀积一层单晶形成外延片;

4)晶圆加工,通过光刻、沉积、离子注入和金属钝化等前段工艺加工形成的碳化硅晶圆,经后段工艺可制成碳化硅芯片;

5)器件制造与封装测试,所制造的电子电力器件及模组可通过验证进入应用环节。

image.png

碳化硅产品从生产到应用的全流程历时较长。以碳化硅功率器件为例,从单晶生长到形成衬底需耗时1 个月,从外延生长到晶圆前后段加工完成需耗时6-12 个月,从器件制造再到上车验证更需1-2 年时间。对于碳化硅功率器件IDM 厂商而言,从工业设计、应用等环节转化为收入增长的周期非常之长,汽车行业一般需要4-5 年。

三、衬底:价值量占比46%,为最核心的环节

由SiC 粉经过长晶、加工、切割、研磨、抛光、清洗环节最终形成衬底。其中SiC晶体的生长为核心工艺,核心难点在提升良率。类型可分为导电型、和半绝缘型衬底,分别用于功率和射频器件领域。

就技术路线而言,碳化硅的单晶生产方式主要有物理气相传输法(PVT)、高温气相化学沉积法(HT-CVD)、液相法(LPE)等方法,目前商用碳化硅单晶生长主流方法为相对成熟的PVT 法。

image.png

PVT:生长系统稳定性不佳、晶体生长效率低、易产生标晶型杂乱以及各种结晶缺陷等严重质量问题,从而成本较高。

HT-CVD:起步晚,能够制备高纯度、高质量的半绝缘碳化硅晶体,但设备昂贵、高纯气体价格不菲。

LPE:尚未成熟,可以大幅降低生产温度、提升生产速度,且在此方法下熔体本身更易扩型,晶体质量亦大为提高,因而被认为是碳化硅材料走向低成本的较好路径,有积极的发展空间。

四、衬底:大尺寸大势所趋,是SiC 产业化降本的核心

目前6 英寸碳化硅衬底价格在1000美金/片左右,数倍于传统硅基半导体,核心降本方式包括:提升材料使用率(向大尺寸发展)、降低制造成本(提升良率)、提升生产效率(更成熟的长晶工艺)。

长晶端:SiC包含 200多种同质异构结构的晶型,但只有4H 型(4H-SiC)等少数几种是所需的晶型。而PVT 长晶的整个反应处于2300°C高温、完整密闭的腔室内(类似黑匣子),极易发生不同晶型的转化,任意生长条件的波动都会影响晶体的生长、参数很难精确调控,很难从中找到最佳生长条件。目前行业主流良率在50-60%左右(传统硅基在90%以上),有较大提升空间。

机加工端:碳化硅硬度与金刚石接近(莫氏硬度达9.5),切割、研磨、抛光技术难度大,工艺水平的提高需要长期的研发积累。目前该环节行业主流良率在70-80%左右,仍有提升空间。

提升生产效率(更成熟的长晶工艺):SiC长晶的速度极为缓慢,行业平均水平每小时仅能生长0.2-0.3mm,较传统晶硅生长速度相比慢近百倍以上。未来需PVT 工艺的进一步成熟、或向其他先进工艺(如液相法)的延伸。

image.png

五、SiC衬底设备:与传统晶硅差异较小,工艺调教为核心壁垒

SiC衬底设备主要包括:长晶炉、切片机、研磨机、抛光机、清洗设备等。与传统传统晶硅设备具相通性、但工艺难度更高,设备+工艺合作研发是关键。

image.png


外延设备及外延片:价值量占比23%

本质是在衬底上面再覆盖一层薄膜以满足器件生产的条件。具体分为:导电型SiC 衬底用于SiC 外延,进而生产功率器件用于电动汽车以及新能源等领域。半绝缘型SiC 衬底用于氮化镓外延,进而生产射频器件用于5G 通信等领域。

全球SiC外延设备被行业四大龙头企业Axitron、LPE、TEL和Nuflare垄断,并各具优势。


六、碳化硅功率器件芯片封装清洗:

合明科技研发的水基清洗剂配合合适的清洗工艺能为芯片封装前提供洁净的界面条件。

水基清洗的工艺和设备配置选择对清洗精密器件尤其重要,一旦选定,就会作为一个长期的使用和运行方式。水基清洗剂必须满足清洗、漂洗、干燥的全工艺流程。

污染物有多种,可归纳为离子型和非离子型两大类。离子型污染物接触到环境中的湿气,通电后发生电化学迁移,形成树枝状结构体,造成低电阻通路,破坏了电路板功能。非离子型污染物可穿透PC B 的绝缘层,在PCB板表层下生长枝晶。除了离子型和非离子型污染物,还有粒状污染物,例如焊料球、焊料槽内的浮点、灰尘、尘埃等,这些污染物会导致焊点质量降低、焊接时焊点拉尖、产生气孔、短路等等多种不良现象。

这么多污染物,到底哪些才是最备受关注的呢?助焊剂或锡膏普遍应用于回流焊和波峰焊工艺中,它们主要由溶剂、润湿剂、树脂、缓蚀剂和活化剂等多种成分,焊后必然存在热改性生成物,这些物质在所有污染物中的占据主导,从产品失效情况来而言,焊后残余物是影响产品质量最主要的影响因素,离子型残留物易引起电迁移使绝缘电阻下降,松香树脂残留物易吸附灰尘或杂质引发接触电阻增大,严重者导致开路失效,因此焊后必须进行严格的清洗,才能保障电路板的质量。

合明科技运用自身原创的产品技术,满足芯片封装工艺制程清洗的高难度技术要求,打破国外厂商在行业中的垄断地位,为芯片封装材料全面国产自主提供强有力的支持。

推荐使用合明科技水基清洗剂产品。


[图标] 联系我们
[↑]
申请
[x]
*
*
标有 * 的为必填
Baidu
map